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Abstract: Calculus over complex variables is the subject of complex function theory. In this work, 
we take a systematic look at what we know about complex numbers from a higher perspective. The 
collection of all complex numbers is called a field in algebra. All complex numbers, geometrically, 
constitute a full metric space with an attractive topological structure. Mathematicians use complex 
numbers to solve technical issues in a very succinct manner. Complex numbers' computational and 
algebraic characteristics are summarized, as well as their geometric representation. Then we go over 
the group structure of unity of roots in depth and provide proofs for a number of beautiful conclusions.  

1. Introduction  
Because of its importance in the quantum gate, qubit, phasor, potential flow, and quantum physics, 

the topic of complex numbers must be introduced [1-10]. Complex numbers are important in many 
fields of mathematics, including number theory and probability theory. Mathematicians use complex 
numbers to solve technical issues in a very succinct manner. This paper addresses the geometric 
representation of complex numbers as well as its computational and algebraic characteristics. Then 
we go into the group structure of unity of roots in depth and provide comprehensive proofs for a 
number of stunning conclusions. We provide thorough proof of the following identity. 

(1 + 2cos 2π
n

)(1 + 2cos 4π
n

)(1 + 2cos 6π
n

)…(1 + 2cos 2kπ
n

) = 3             (1) 

Where n is prime. 

2. Main works 
2.1 Complex numbers 

A complex number is an element in the form of  

                         𝑥𝑥 + 𝑖𝑖𝑖𝑖                                    (2) 

Where x, y are two arbitrary real numbers, and 𝑖𝑖 is the root of the equation𝑥𝑥2 + 1 = 0. 
We use the notation 𝒞𝒞 as the set of all of the complex numbers, i.e. 

C =: {𝑥𝑥 + 𝑖𝑖 ⋅ 𝑖𝑖|𝑥𝑥 ∈ 𝑅𝑅,𝑖𝑖 ∈ 𝑅𝑅}                           (3) 

2. For a given complex number 𝑧𝑧 =  𝑥𝑥 +  𝑖𝑖 ⋅ 𝑖𝑖 , where x, y are two real numbers. 
We define its real part as x and use the notation 𝑅𝑅𝑅𝑅(𝑧𝑧) to represent its real part.; we say 𝑖𝑖 is its 

imaginary part and use the notation 𝐼𝐼𝐼𝐼(𝑧𝑧) to represent its imaginary part; we define its modulus as 

|𝑧𝑧| = �(𝑥𝑥2 + 𝑖𝑖2)                               (4) 

Given two complex numbers, we denote them as𝑧𝑧1,  𝑧𝑧2. That is, 𝑧𝑧1,  𝑧𝑧2 ∈  𝐶𝐶. Then we have that 
|𝑧𝑧1 + 𝑧𝑧2|2 + |𝑧𝑧1 − 𝑧𝑧2|2 = 2(|𝑧𝑧1|2 + |𝑧𝑧2|2). 
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                    (5) 

                    (6) 

Thus, the left-hand side = �|𝑧𝑧1|2 + |𝑧𝑧2|2 + (𝑧𝑧1 ⋅ 𝑧𝑧2� + 𝑧𝑧1� ⋅ 𝑧𝑧2)�+ �|𝑧𝑧1|2 + |𝑧𝑧2|2 − (𝑧𝑧1 ⋅ 𝑥𝑥2��� + 𝑧𝑧1� ⋅ 𝑧𝑧2)�  =
2(|𝑧𝑧1|2 + |𝑧𝑧2|2) = the left-hand side. 

2.2 Complex plane 

After forming a rectangular coordinate -system, the real number pair mean a point. So, Z = a + bi 
means abscissa is a and ordinate is b. And if that point’s polar coordinates be (r, θ), so the complex 
number z = a + bi can show as z=r (cos𝜃𝜃 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃). R = |z| =√𝑎𝑎2 + 𝑏𝑏2 is the modulus of z which 
identify before θ called by the auxiliary angle, so 𝜃𝜃 + 2𝑘𝑘𝑘𝑘 will also be auxiliary angle of z, the k 
will be any inter number, so that the auxiliary angle will be infinity. But in𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧, there is only one θ 
follow by the conditions which is -𝑘𝑘 < 𝜃𝜃 ≤ 𝜃𝜃, so called this θ be the principal value of the auxiliary 
angle of z and write asArgz. So Argz = argz + 2kπ, k ∈ Z..  

Here, Z means the whole group of the integer number and the auxiliary angle of 0 has no meaning.  
Then let the complex number z = a + bi be the projection on x-axis and y-axis be the vector of a 

and b respectively, and at that time, it can be found the complex number and vector as the same 
meaning. Easily, find from a start point and the end point of a vector, are the complex number 𝑧𝑧1and 
𝑧𝑧2respectively, so complex number this vector show is 𝑧𝑧1 − 𝑧𝑧2 , so |𝑧𝑧1 − 𝑧𝑧2 | shows the distance 
between the 𝑧𝑧1 and 𝑧𝑧2. In particular, when the starting point of a vector is the origin, the complex 
numbers represented by its terminus are the same as those represented by the vector. It can be seen 
from this that It follows that the addition of complex numbers defined earlier is the same as the 
addition of vectors: take the starting points of two non-zero vectors 𝑧𝑧1  and 𝑧𝑧2  which do not 
coincide, at the origin, with Z1 and 𝑧𝑧2 as two side, draw a parallelogram for both sides, then the 
vector along the diagonal from the origin point will represent𝑧𝑧1 + 𝑧𝑧2; The vector starting with 𝑧𝑧2 
and ending with 𝑧𝑧1  represents 𝑧𝑧1 -𝑧𝑧2 . Inequality |𝑧𝑧1 + 𝑧𝑧2 | ≤|𝑧𝑧1 |+|𝑧𝑧2 |, it is actually the simplest 
geometric proposition that the sum of the two sides of a triangle is greater than the third side. To 
illustrate the geometric meaning of complex multiplication, by using the trigonometric representation 
of complex numbers, suppose 

                 𝑧𝑧1 = 𝐴𝐴1(cos𝜃𝜃1 + 𝑖𝑖 sin𝜃𝜃1)                         (7) 

                 𝑧𝑧2 = 𝐴𝐴2(cos𝜃𝜃2 + 𝑖𝑖 sin𝜃𝜃2                         (8) 

So, 𝑧𝑧1𝑧𝑧2 = 𝐴𝐴1𝐴𝐴2(cos(𝜃𝜃1 + 𝜃𝜃2) + 𝑖𝑖 sin(𝜃𝜃1 + 𝜃𝜃2)). 
From this, |𝑧𝑧1𝑧𝑧2| = |𝑧𝑧1| + |𝑧𝑧2|, Arg(𝑧𝑧1𝑧𝑧2) = Arg𝑧𝑧1 + Arg𝑧𝑧2. the first equation was proved in Section 

2.1The second equation should be understood as the equality of two sets. That is to say, the product 
of two complex numbers is a complex number whose magnitude is the product of the magnitudes of 
two complex numbers, whose arguments are the sum of the arguments of the two complex numbers. 
Geometrically, multiplying the complex number z by 0 is equivalent to rotating z counterclockwise 
by an Angle of magnitude argw and extending the length of z by |w|, In particular, if w is the unit 
vector, then w multiplied by z results in turning z counterclockwise by an angle of magnitudeargw. 
For example, given 𝑖𝑖 is the unit vector, and its argument𝜋𝜋

2
 , so 𝑖𝑖𝑧𝑧 is the vector obtained by turning z 

counterclockwise by𝜋𝜋
2
. This geometric intuition is very useful in thinking about problems. For the 

division of the complex number, because of𝑧𝑧1
𝑧𝑧2

= 𝑟𝑟1
𝑟𝑟2

[cos(𝜃𝜃1 − 𝜃𝜃2) + 𝑖𝑖 sin(𝜃𝜃1 − 𝜃𝜃2)], it follows that�𝑧𝑧1
𝑧𝑧2
� =

|𝑧𝑧1|
|𝑧𝑧2| , Arg�𝑧𝑧1

𝑧𝑧2
� = 𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧2. Here, the second equation is also understood to be equal to the set, 
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which means that the Angle between vector 𝑧𝑧1 and 𝑧𝑧2 is Arg�𝑧𝑧1
𝑧𝑧2
� to represent this simple fact in 

discussing some geometry problem. For example, it is easy to prove that the necessary and sufficient 
condition for the perpendicularity of vectors (𝑧𝑧1 and 𝑧𝑧2 is Re (𝑧𝑧1𝑧𝑧2� ) = 0. This is because the included 
angle between (𝑧𝑧1 and 𝑧𝑧2 is± 𝜋𝜋

2
, namely𝑎𝑎𝐴𝐴𝐴𝐴 �𝑧𝑧1

𝑧𝑧2
� = ± 𝜋𝜋

2
, which shows that (𝑧𝑧1 is a pure imaginary 

number, so z1z2 is also a pure imaginary number, that is, Re (𝑧𝑧1𝑧𝑧2� ) = 0. Similarly, the necessary and 
sufficient condition for (𝑧𝑧1 and 𝑧𝑧2 to be parallel is Im(𝑧𝑧1𝑧𝑧2� )= 0. 

It is sometimes very convenient to use knowledge of complex numbers to deal with geometric 
problems. Here are two examples. In the triangle below, AB=AC, PQ=RS, M and N are the midpoints 
of PR and QS respectively: MN⊥BC. 

Prove: If A is taken as the coordinate origin and the straight line where AB is located is taken as 
the X axis, then the coordinates of P and Q are a and a + h respectively. If 𝑅𝑅𝑖𝑖𝜃𝜃 is denoted as𝑐𝑐𝑐𝑐𝑖𝑖𝜃𝜃 +
𝑖𝑖 sin𝜃𝜃 , then R and S points can be represented by the complex number r𝑅𝑅𝑖𝑖𝜃𝜃  and (r + h)𝑅𝑅𝑖𝑖𝜃𝜃 
respectively. Since m and N are the midpoint of PR and sq respectively, m and N can be expressed 
in complex numbers as: 

               (9) 

If write down the coordinates of B is b, because of AB=AC, so the coordinates of C is𝑏𝑏𝑅𝑅𝑖𝑖𝜃𝜃. If 
write down𝑧𝑧2 = 𝐵𝐵𝐶𝐶�����⃗ , so𝑧𝑧2 = 𝑏𝑏𝑖𝑖𝜃𝜃 − 𝑏𝑏 = 𝑏𝑏�𝑅𝑅𝑖𝑖𝜃𝜃 − 1�. 

             (10) 

So Re (𝑧𝑧1𝑧𝑧2� ) = 0. So 𝑧𝑧1 ⊥ 𝑧𝑧2, which means MN⊥BC. 
For future discussion, there will be introduction of a new number ∞ into C. The modulus of this 

number is∞, and the argument is meaningless. The operation rule of this number and other numbers 
is as follows: 

  𝑧𝑧 ± ∞ = ∞, 𝑧𝑧 • ∞ = ∞(𝑧𝑧 ≠ 0)                        (11) 
𝑧𝑧
∞

= 0, 𝑧𝑧
0

= ∞(𝑧𝑧 ≠ 0)                            (12) 

0 • ∞ And ∞ ± ∞ do not specify their meanings, and the complex number of ∞ is introduced 
as𝐶𝐶∞, which is𝐶𝐶∞ = 𝐶𝐶 ⋃{∞}. On the complex plane, there is no point that corresponds to∞, but 
imagine that there is an infinity that corresponds to∞, and the complex plane with infinity plus is 
called the extended plane or the closed plane, and the complex plane without infinity is also called 
the open plane. In the complex plane, where infinity is not the same as ordinary points, Riemann first 
introduced the sphere surface of complex numbers representation, in which ∞ is no difference 
between ordinary complex numbers, let 𝑆𝑆 be the unit sphere of 𝑅𝑅3, i.e.𝑆𝑆 = {(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3)  ∈ 𝑅𝑅3 ∶  𝑥𝑥12 +
𝑥𝑥22 + 𝑥𝑥32 = 1}. 

Equating C to a plane:𝐶𝐶 = {(𝑥𝑥1,𝑥𝑥2, 0) ∶  𝑥𝑥1,𝑥𝑥2 ∈  𝑅𝑅}. 
For the north plate N of fixed S, that is, N= (0, 0, 1), for any point z on C, the line connecting N 

and 2 must intersect S at point P. If |𝑧𝑧| >1, P is in the northern hemisphere. If |𝑧𝑧| <1, P is in the 
southern hemisphere; If |𝑧𝑧|=1, then P is x. It is easy to see that as z approaches∞, the corresponding 
point P on the sphere approaches the North Pole N. Naturally, 𝐶𝐶∞ is refer to corresponds to the North 
Pole of n. Thus, all points in 𝐶𝐶∞ (including infinity) are transplanted to the sphere, where N and other 
points are peer dependent. 

The corresponding expression is now given. If z=x + iy, it is easy to calculate the coordinate of 
the intersection of zN and sphere S.𝑥𝑥1 = 2𝑥𝑥

𝑥𝑥2+𝑦𝑦2+1
, 𝑥𝑥2 = 2𝑦𝑦

𝑥𝑥2+𝑦𝑦2+1
, 𝑥𝑥3 = 𝑥𝑥2+𝑦𝑦2−1

𝑥𝑥2+𝑦𝑦2+1
. 
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Let's just use the complex number z, can show as:𝑥𝑥1 = 𝑧𝑧+�̅�𝑧
1+|𝑧𝑧|2 ,𝑥𝑥2 = 𝑧𝑧−�̅�𝑧

𝑖𝑖(1+|𝑧𝑧|2) , 𝑥𝑥3 = |𝑧𝑧|2−1
|𝑧𝑧|2+1

. 
In this way, the coordinates of its corresponding points on the spherical soil can be calculated from 

x, and conversely, its corresponding points on the plane x can be calculated from the points on the 
sphere(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3). In fact, get from above expression. 

�
𝑥𝑥1 + 𝑖𝑖𝑥𝑥2 = 2𝑧𝑧

1+|𝑧𝑧|2

1 − 𝑥𝑥3 = 2
1+|𝑧𝑧|2 ,

                             (13) 

Thus obtained, 

𝑧𝑧 = 𝑥𝑥1+𝑖𝑖𝑥𝑥2
1−𝑥𝑥3

                                (14) 

This is the required calculation formula. 
Assume the integer n is a prime that is bigger than three, then (1 + 2cos 2π

n
)(1 + 2cos 4π

n
)(1 +

2cos 6π
n

)…(1 + 2cos 2kπ
n

) = 3. 
Proof: 

For convenience, assume that w=e
2πi
n  Thenwn = 1, w−n2 = e−ni = −1, 2cos 2kπ

n
= wk + w−k. 

∏ (1 + 2cos 2kπ
n

)n
k=1 = ∏ (1 + wk + w−k) = ∏ w−k(w2k + wk + 1) =n

k=1
n
k=1 w−n(n+1)

2 · 3∏ 1−w3k

1−wk
n−1
k=1 = (−1)n+1 ·

3∏ 1−w3k

1−wk
n−1
k=1 . The number n is a prime bigger than 3.  
Thus, it must be an odd number. It follows that n+1 is an even number. Thus(−1)n+1 = 1 .  
As a result,∏ (1 + 2cos 2kπ

n
)n

k=1 = (−1)n+1. 3∏ 1−w3k

1−wk
n−1
k=1 = 3∏ 1−w3k

1−wk
n−1
k=1 . 

It suffices to prove that ∏ 1−w3k

1−wk
n−1
k=1 =1. 

Take the set S={1, w1, w2, . . . , wn−1} into consideration under multiplication. 
Assume that j∈{0,1,2,...,n-1}. wiwj = wi+j. If i+j≤n-1, wi+j ∈S.  
If i+j>n-1, since i+j-n≤n-1, wi+j = wi+j−n ∈A. Therefore, A is closed. 
Let i,j,k∈{0,1,2,...,n-1}. (wiwj)wk = wi+j+k = wi(wjwk), so S is associative. 
Let i∈{0,1,2,...,n-1}. wi·1=1·wi=wi, so 1 is the identity. 
Let i∈{0,1,2,...,n-1}. wi·w−i=w−i·wi=1, so w−i is the inverse ofwi. 
Therefore, the set S={1, w1, w2, . . . , wn−1} is a group under multiplication. 
Since A= {wn |n∈Z}, A is a cyclic group. Consider the set B=�1, w3, w6, . . . , w3(n−1)� under 

multiplication. Let i, j∈{0,3,6,...,3(n-1)}. wiwj = wi+j. If i+j≤3(n-1), wi+j ∈B. If i+j>3(n-1), since 
i+j-3n≤3(n-1), wi+j = wi+j−3n ∈B. Therefore, B is closed. 

1. Let i, j, k∈{0,3,6,...,3(n-1)}. (wiwj)wk = wi+j+k = wi(wjwk), so B is associative. 
2. Let i∈{0,3,6,...,3(n-1)}. wi·1=1·wi=wi, so 1 is the identity. 
3. Let i∈{0,3,6,...,3(n-1)}. wi·w−i=w−i·wi=1, so w−i is the inverse ofwi. 
Therefore, the set B=�1, w3, w6, . . . , w3(n−1)� is a group under multiplication. 
Since B= {w3n|n∈Z}, B is a cyclic group. Since n is a prime greater than 3, 0 is not a possible 

remainder of 3, 3×2… 3(n-1), divided by n. Since there are n-1 elements in the set {3, 3×2,…, 3(n-
1)} and the remainders can only be 1,2,...,n-1, then the set of the remainders is {1,2,...,n-1}.Hence, 
the groups {3, 3×2,…, 3(n-1)} and {1,2,...,n-1} are equal under modulo of n. Notice that under the 
operation modulo of n, the group {1, w1, w2, . . . , wn−1}  is isomorphic to {1,2,...,n-1}, and 
�1, w3, w6, . . . , w3(n−1)� is isomorphic to {3, 3×2,…, 3(n-1)} , so {1, w1, w2, . . . , wn−1} is isomorphic 
to �1, w3, w6, . . . , w3(n−1)� . Because wn = 1 , then wk = wk mod n. Thus 
{1, w1, w2, . . . , wn−1} = �1, w3, w6, . . . , w3(n−1)� . ∴ {w1, w2, . . . , wn−1} = �w3, w6, . . . , w3(n−1)� . ∴
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∏ 1−w3k

1−wk
n−1
k=1 = (1−w3)(1−w6)...(1−w3(n−1))

(1−w)(1−w2)...(1−wn−1)
= 1 . ∴ (1 + 2cos 2π

n
)(1 + 2cos 4π

n
)(1 + 2cos 6π

n
) … (1 +

2cos 2kπ
n

) = 3.  

3. Conclusion 
We present numerous beautiful conclusions on the roots of unity in this work, which covers the 

basic geometric and algebraic characteristics of complex numbers. We'll write more about whole 
functions, which are a type of significant holomorphic functions, in the future. We'll go through 
various proofs of Jensen's formula in depth, as well as growth order and infinite products. 
Understanding how these theorems and ideas are linked to show some interesting features of the 
whole function is important. Weierstrass and Hadamard's work should be taken into account in the 
future. 

References 
[1] B. Blank, an Imaginary Tale Book Review, in Notices of the AMS Volume 46, Number 10, 
November 1999, pp. 1233-1236. 
[2] M. Crowe, a History of Vector Analysis, U. of Notre Dame Press, Notre Dame, 1967.  
[3] S. Lang. Complex Analysis. Springer-Verlag, New York, fourth edition, 1999.  
[4] B. L. van der Waerden, a History of Algebra, Springer Verlag, NY 1985. 
[5] S. Saks and Z. Zygmund. Analytic Functions. Elsevier, PWN-Polish Scientific, third edition, 
1971.  
[6] E. C. Titchmarsh. The Theory of Functions. Oxford University Press, London, second edition, 
1939.  
[7] E.T. Copson. Asymptotic Expansions, volume 55 of Cambridge Tracts in Math. And Math 
Physics. Cambridge University Press, 1965.  
[8] P. L. Duren. Univalent Functions. Springer-Verlag, New York, 1983.  
[9] A. Erd ́elyi. Asymptotic Expansions. Dover, New York, 1956.  
[10] E.M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003. 

128


	1. Introduction
	2. Main works
	3. Conclusion
	References



